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equations

1 Introduction

In recent years, fractional equations, both partial and ordinary
ones, have been applied intensively in modeling many physical,
engineering, chemistry, or biology complex phenomena [1-3].
Because the exact solutions of most of the nonlinear fractional
partial differential equations (FPDEs) cannot be found easily,
many attempts have been spent on achieving the exact solutions.
As a result, many effective methods have been established such as
the Backlund and Darboux transform [4], homotopy perturbation
method [5], variational iteration method [6,7], homotopy analysis
method [8,9], fractional subequation method [10,11], and so on
[12-15].

The fractional subequation method is a very strong technique
for finding exact solutions of nonlinear fractional differential
equations. Recently, this method was introduced by Zhang and
Zhang [16]. Further Guo et al. [17] and Lu [18] proposed the
improved fractional subequation method to obtain the analytical
solutions of nonlinear fractional differential equations. This method
is determined on the homogeneous balance principle [19] and the
modified Riemann-Liouville derivative described in Refs. [20,21]

D) = gy ), (= OO O 0 <as
m
and
DA(x) = (F* N, n<a<n+l, n=1 (2

We briefly present below some useful formulas of Jumarie’s
modified Riemann-Liouville derivative [20]:
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Df.x"" = mx},_a, v > 0 (3)
D?[f (x)g(x)] = g(x)D3f (x) 4 f (x)DYg(x) )
Diflg(x)] = f,8(x)]Dig(x) = Diflg(x)|(g})” )

The properties of the Jumarie derivative are suitable for changing
the variables while the Riemann—Liouville gives complicated
results. In this manuscript, we apply a fractional subequation for
solving FPDEs that is based on the Backlund transformation tech-
nique [18] and known seed solutions.

The structure of this manuscript is as follows:

In Sec. 2, we give a brief exposition of the fractional
subequation method. In Sec. 3, we present some applications of
the proposed method to some nonlinear equations. A conclusion is
shown in Sec. 4.

2 Summary of the Fractional Subequation Method

In this section, we present a brief summary of the fractional Fan
subequation method for solving fractional differential equations [10].
Consider the following the fractional partial differential equation:

p(u, Uy, Uy, Dfu, Du, ) =0, 0<a<l 6)

where D?u and D%u are Jumarie’s modified Riemann—Liouville
derivatives of u, and x and ¢ are two independent variables. Using
the traveling wave transformation,

ulx,t) =u(é), E=hkx+ct (7

where ¢ and k are constants, we rewrite Eq. (6) as
p(ukad el DI, "D, ) =0, 0<a<l (8

APRIL 2014, Vol. 9 / 021019-1

Copyright © 2014 by ASME

Downloaded From: http://computationalnonlinear.asmedigitalcollection.asme.or g/ on 01/21/2015 Terms of Use: http://asme.org/terms



which is a nonlinear fractional ordinary differential equation. We
assume that Eq. (8) has a solution as

Z ay ©

where a; (i=0,1,...,n— 1,n) are constants to be determined
later, the positive integer n can be found by balancing the highest
order derivatives with the nonlinear terms in Egs. (6) or (8), and
(&) is the Bécklund transform for a fractional type Riccati
equation

Dip(&) =a+ (&), 0<a<l (10)
in the following form:
o _ —0B+Do(E)
= 11
¥(S) D+ Bo(®) (1n

where B # 0, D are arbitrary parameters, and /(&) satisfies the
following fractional Riccati equation:

Diy=c+y’, 0<a<l 12)

Here ¢(¢) denotes the known solutions of Eq. (10). Some exact
solutions to Eq. (10) are derived by Zhang and Zhang [16] as
follows:

—+/—atanh, (v/—a&), g<0
—+/—a coth,(/—0a&), g<0
9(¢) = { Votam(voo), >0 13
—/a coty(\/&), a>0
r
—7(: i a), o =const., c=0
C+o

By subetltutmg Eq. (9) into Eq. (8) and equating each coefficient
of Y(&) (k=0,1,2,...) to zero, we obtain a set of algebraic
equations for ¢, k,a;(i =0,1,...,n— 1,n). Using Mathematica
software, we obtain ¢ kyai(i=0,1,...,n — 1,n). Then the exact
solution of Eq. (6) is obtained by replacing these values in Eq. (9).
We mention that the limitation of this method is related to the
range of validity of the properties of Jumarie’s derivative, e.g.,
properties 3 and 4, respectively.

3 Applications

In this section, we apply the fractional subequation method
for solving the modified fractional equal width equation, the
fractional Fisher equation, the nonlinear fractional Telegraph
equation, and the fractional Cahn—Allen equation.

2(ok* 4 1)(480k>* + 51> + 12)
p(u* —36) ’

ay = ik“

apg =

3.1 Example. We consider the space-time fractional modified
equal width equation as [22]

2 3
D*u = —u*D* + D, (14)
By using the traveling wave transformations
=u(l), ¢=hkx+ct (15)

Eq. (14) is reduced to a nonlinear fractional ordinal differential
equation, namely,

*Diu+ k*u*Diu — k***D¥u =0 (16)
By balancing u>D?¥ and D¥* gets n = 1, then we have the solution
of Eq. (16) in the following form:

u=ap+ a1lﬂ 17)

Substituting Eq. (17) into Eq. (16) and setting coefficients of
W (j=0,1,...,4) to zero we finally obtain

1
ap=0, a =*=V6ctk*, K= 5 (18)

where ¢ denotes an arbitrary constant. Based on the above result
and substituting Eq. (13) into Eq. (17), we have the exact solution
of Eq. (14) as

u:i\/WGB+D o tanh, 65), g<0
—D + B/—o tanh,(y/—ad¢)
0B + D+/—a coth, (/=€)
= V6 0
" DBy ecoth, (v/—=a&)’ 7
—0B + Dy/a tan, (/&)
= E£/6c%* 0
! ¢ D + By/atan,(\/a&) ’ s
u:i\/WaB+D\/ECOt‘(\/E ) c>0

—D + B+/a coty(/a&)’

3.2 Example. Let us consider the space-time fractional Fisher
equation [22]
D*u = D* +2u(1 —u?) + u(1 — u?) (19)
As before, by using traveling wave transformation we end up with
a nonlinear fractional differential equation, namely,
Dl —k*DFu —2u(l —u*) — (1 —u?) =0 (20)
Like in the previous example, we obtain the following set of
solutions.
Ifa#0
Case 1. Consider

612 (k> + 4) 23611/ 120k + 12 + 12 F 1P \/126k% + 12 + 12+ 72(—

O_2k4a+o_k21+2)+ﬂ4 (21)

kd:i\/

o(120k> + 2 + 12)
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Case 2. Consider

ifo=0.
Case 4. We have

1 5
ap = gk’“(—c‘" —uk*), ay =k, p==6
(22)
20 _ Vok* 4+ 28k2 1
kd:iy’ c“:iw ap = 5#(# 720) ay = *k*, pu=*x2,
Case 3. Consider = E (44pk” — 31°k%)
1
ay = gkfo‘(c“ — pk*), a;=—k*, u==6
- Vol —8 - 2ol T 28K (23)  Case 1 leads us to the following solutions of Eq. (19):
o 3o N V3 |
L 2(ok* 4-1)(480k™ + 51> +12) o OB + D+/=a tanh,(\/=a¢) - <0
B u(p® —36) = —D+ By/=ctanh,(\/—a¢)’
2(ak®* 4 1)(480k* + 512 + 12) g 0B + D+/—a cothy (/=€) 5 <0
u= nal o ,
u(u? —36) —D + By/—0 coth,(y/—0¢)
2(ak® + 1)(486k> + 51> +12) _  —6B + Dy/atan,(/a&)
u= *k , >0
p(p? —36) D + B\/otan,(/s¢)
(sz“ +1)(480k%* + 51 + 12) g B + D+/o coty(\/a&) 50
+ , o
p(p* — 36) —D + B\/g coty(1/5¢)

From the second, we can obtain many other exact solutions of
Eq. (19), such as

-
= k(o 6k % A il;;il;\/\:_i‘;‘:; ((\/\/—_i?) , 0<0
u= ék’“(—c“ +6k7) = K 7;12?/3@1 ;a“(\(/\a/gf) . a>0
u= ék*“(—c“ + 6k*) = k* il;j_l;\\//_‘;iiz((\/;‘?) , ¢>0

From the third, we can obtain many other exact solutions of Eq.
(19), such as

o , 0B + D\/—a tanh,(y/—a¢&)

= - 6k") Tk

u 6k (+c* — 6k™) —D + B\/—a tanh,(\/—a¢)’ 70
! B4 Dy g ooty —

M:*k7“(+cai6k“)ik oo \/—O—COt (\/—0—5)7 O-<0
6 —D + By/—0 coth,(y/=a¢)
1 —oB + D tan,

u= k(" — 6k =k Lo 70
‘ D + By/atan,(y/a¢)
1 B+ Dy cot

U=k (+c* — 6k7) + k2 ha \/Ecoy(\/a)7 70
: —D + By/a cot,(1/a¢)

Finally, the fourth case provides the following exact solutions of
Eq. (19)

, 0B(E* +w)+DI'(1+ o)

u= *1=xk s
—D(&*+w)+ BT (1+0)

Q
I
(e}

3.3 Example. We consider the nonlinear space-time frac-
tional Telegraph equation [22]

D¥u— D¥ 4 D* + yu+ pu’ =0 (25)
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Using the transformations of the Sec. 3.2, the transformed equa-
tion of Eq. (25) becomes

F*D¥u— kDY + "DE +yu+ pu’ =0 (26)
Similarly, we obtain
a() - i M7 al = i ZiC“ )
2VB 3VByT @7
PR Vi it N |

_ ka

By using the above results, we have the exact solution in the form

- iy, 2ic* 0B+ Dy/—adtanh,(\/—a¢) 5 <0
" 2VB  3VB7—D+ By/—atanh,(y/=a¢)’
- /7, 2ic* oB+ Dy/—acothy(y/—a¢) 5<0
N 3VB/7 —D + By/=a coth,(y/—a¢)’
- iy, 2ic* —oB+Dy/atan,(/ad) 5> 0
- T 2VB T 3VBY7 D+Byotan,(\al)
R iy, 2ic® B+ Dy/gcoty(\/a¢) >0
- T 2VB " 3VBy7—D +Byacot, (/&)

3.4 Example. Consider the space-time fractional Cahn—Allen
equation [22]

D*u=D* —u +u (28)

Using the transformations explained in the previous section, the
transformed equation of Eq.(28) becomes

Diu—k*D¥ + 1w’ —u =0 (29)
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Thus, we have the following results:

1 2¢* 3V k2 1
— o+ _ — o 4 20 _
ao 9 ap + 3 c — \/i ) k 8 (30)

Therefore, we obtain the exact solution as

2¢* oB + Dy/—o tanh,(y/=a¢)

==+1 <0
! 273 —D + By/—a tanh,(/—a¢)’ 7
1 2¢* 6B + Dy/—a coth,(y/—a¢) <0
U=+ _-F— a
2 3 —D+ By/=acoth,(v/—ad¢&)’
M:t1¢E70'BJrD\/Etano((\/i;é)7 >0
2773 D+ By tan,(yad)
1 2 6B+D t,
. 2¢” 6B + D /5 coty(1/a¢€) >0

“273 —D + B\/g cot,(\/a&)’

4 Conclusions

In this manuscript, based on the Backlund transformation of
the fractional Riccati equation with known solutions, we have
obtained the exact solutions of four nonlinear fractional differen-
tial equations having many practical applications. Mathematica
has been used for computations and programming in this manu-
script. The results show that this method is accurate and effective,
and it can be used for many other nonlinear fractional differential
equations with real world applications.
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