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where the subscripts A and R indicate the modes as-
sociated with the observers Alice and Rob, respec-
tively. All other modes of the field are in the vac-
uum state, and therefore the state can be written as
|Φ〉 = |φkA,kR

〉 {∏k 6=kA ,kR
|0k〉+

∏
k′ |0k′〉−}. Now as-

sume that Alice is stationary and has a detector sensitive
only to mode kA. Rob moves with uniform acceleration
and takes with him a detector that only detects particles
corresponding to mode kR. We ask the question of what
is the entanglement between modes kA and kR observed
by Alice and Rob, given that Rob undergoes uniform ac-
celeration. Note that in order to determine the amount
of entanglement, Alice and Rob perform measurements
which are then compared by either party in order to es-
timate the correlations in the results. Due to Rob’s ac-
celeration, at some point Alice’s signals will no longer
reach Rob, but Rob’s signals will always be available to
Alice, (see Fig. 1). At this point only Alice can compare
the measurement results and estimate the entanglement
of the state. Let us now consider the state observed by
Rob.

III. UNRUH EFFECT FOR DIRAC PARTICLES

Consider Rob to be uniformly accelerated in the (t, z)
plane (c = 1). Rindler coordinates (τ, ζ) are appropriate
for describing the viewpoint of an observer moving with
uniform acceleration. Two different sets of Rindler coor-
dinates, which differ from each other by an overall change
in sign, are necessary for covering Minkowski space [12].
These sets of coordinates define two Rindler regions that
are causally disconnected from each other.

at = eaζ sinh(aτ), az = eaζ cosh(aτ), in region I

(3)

at = −eaζ sinh(aτ), az = −eaζ cosh(aτ), in region II

where a denotes Rob’s proper acceleration. The above set
of coordinates both give rise to the same Rindler metric

ds2 = dt2 − dz2 − d2
x⊥ = e2aζ

(
d2τ − d2ζ

)
− d2

x⊥,

where x⊥ = (x, y) are the same in both Minkowski and
Rindler spacetimes. A particle undergoing eternal uni-
form acceleration remains constrained to either Rindler
region I or II and has no access to the opposite region,
since these two regions are causally disconnected. Fig-
ure 1 serves to illustrate these ideas, as well as to intro-
duce our labeling scheme, where we refer to the acceler-
ated observer in region I as Rob (R) and to the corre-
sponding fictitious observer confined to region II (whose
coordinates are the negative of Rob’s) as anti-Rob

(
R̄
)
.

The coordinates (τ, ζ) have the ranges −∞ < τ, ζ <∞
separately in region I and in region II. This implies that
region I and II each admit a separate quantization proce-
dure with corresponding positive and negative energy so-
lutions {ψI+

k , ψI−
k } and {ψII+

k , ψII−
k }. Since the Rindler

metric is static (independent of τ) it will admit solutions
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FIG. 1: Rindler spacetime diagram: Lines of constant po-
sition ζ are hyperbolas and lines of constant proper time τ
for the accelerated observer run through the origin. Note
that while τ flows in the direction of t in region I, it flows in
the direction of −t in region II, (i.e the dashed line rotates
counter-clockwise for increasing values of τ ). A uniformly ac-
celerated observer Rob (R) with acceleration a travels on a
hyperbola constrained to region I, while a fictitious observer
anti-Rob (R̄) travels on a corresponding hyperbola in region
II given by the negative of Rob’s coordinates. The horizons
H± are lines of τ = ±∞ which Alice (A) will cross at finite
Minkowski times.

of the form e−iωτ φα(ζ,x⊥), with φα a spatially depen-
dent spinor [13]. Particles and anti-particles will be clas-
sified with respect to the future-directed timelike Killing
vector in each region. In region I this is given by ∂τ where

∂τ =
∂t

∂τ
∂t +

∂z

∂τ
∂z = a (z∂t + t∂z),

which is a boost into the instantaneous comoving frame
of Rob. Thus, mode solutions in region I having time
dependence ψI+

k ∼ e−iωτ with ω > 0 represent positive

frequency solutions since ∂τψ
I+
k = −iωψI+

k . However,
in region II ∂τ points in the opposite direction of ∂t (in-
creasing τ flows in the direction of −t, see Fig. 1). Hence
in region II the future-directed timelike Killing vector is
given by ∂−τ = −∂τ [14, 15]. Thus, a solution in region II
with time dependence e−iωτ with ω > 0 is actually a neg-
ative frequency mode since ∂−τ e

−iωτ = iω e−iωτ . Hence,
the positive frequency mode in region II is given by
ψII+

k ∼ eiωτ with ω > 0 satisfying ∂−τψ
II+
k = −iωψII+

k .
Due to the causally disjoint nature of region I and II,
the modes ψI±

k have support only in region I and van-
ish in region II, while the opposite is true for the modes
ψII±

k in region II. The Rindler modes satisfy orthonor-
mality relations analogous to the Minkowski modes [16]

(ψσ±
k , ψσ′∓

k′ ) = 0, and (ψσ±
k , ψσ′±

k′ ) = ± δσ,σ′ δ(k − k′)
where σ ∈ {I, II}.

In region I, let us denote (cIk, c
I†
k ) as the annihila-

tion and creation operators for fermions (particles) and


