Table 1: Best result for each category | Num | Topic | Articles | Techniques | A | Best R | | |--------|--------------------------------------|--|--|--|---|---| | | | | | Article | Method | Result | | X
I | X
Forecasting
Cash De-
mand | X
Article.No
1,2,5,6,7,8,11,
16,17,18,19,20
27,29,40,43,44 | | X
No.6 [?] | X
Time series
methods | X
18.95% SMAPE | | 2 | ATM Location | Article No 25,39 | Neural Network, local learning, Support
vector machine, autoregressive models,
Particle Swarm | No. 32[?] | Particle
Swarm Op-
timization | First, explain the solution of the problem based on the improved PSO algorithm. There is a fitness value for each place in the map. /the place with the shortest distance from the place with the best fitness is the best place in collection of candidates which is result we want. | | | Fraud
Detection | Article No
30,34,36,38,39 | Threshold-based sequence time delay embedding (t-stide), hidden Markov model (HMM), k-nearest neighbor (k-NN), self-learning detection method, Empirical research, Expert System | No. 30 [?] | Threshold-based sequence time delay embedding (t-stide) | 0.85 precision / recall | | | User Interface | Article No
3,24 | Process Mining, Pattern Recognition | No. 24 [?] | Pattern
Recognition | Finally it is see
through this pape
that the incorpora-
tion of biometric fer
tures will be esser
tial to ensure that
these systems are se-
cure enough. | | j | Customer
Behavior | Article No
4,21,28,33,37 | Multiple logistic
regression analysis,
Pearson correlation,
Genetic Algorithm | No. 28
[?] | Correlation
and Re-
gression
analysis | cost effectiveness easy to use an securityand re sponsiveness wer influence custome satisfaction at 369 variance. | | 3 | Replenished
Strategy | Article No
9,13,22,23,41, | Nearest Neighbor- 4200d, Genetic Algo- rithm, Mix-integer programming model, flexible clustering heuristic | No. 9 [?] | Nearest
Neighbor-
hood | 20% MAPE | | 7 | ATM Failure | Article No
10,26,31 | Autoregressive
Moving Average
(ARMA), Classifica-
tion | No. 31
(Zhao,
Xu, and
Liu,
2007) | $\begin{tabular}{ll} a & novel \\ method-\\ ology & to \\ use & auto-\\ regressive \\ moving \\ average \\ \end{tabular}$ | 2.48% Mean Absolute Error (MAE) |