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idempotent, for then x3 e E(S), since <p is an isomorphism, so that e = x3, since eox3 and
o is idempotent-separating.

We show px3 is idempotent. If Lpx3 = co then Lpx3 = Lpx3pX3. Suppose then Lpx3=fcoo,
so L = Ly for some y e £(S), and yMyx3. Hence y = yx3z for some z e S. It is easy to check
both x2zyx and xzyx2 are idempotent. But eox, so xax2, which gives (x2zyx)ff(xz}>x2).
Hence x2zyx = xzyx2, since CT is idempotent-separating. We have the following egg-box
diagram.
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Hence yxJfyx2, so by Green's Lemma yxJVyx" for all neN. In particular yx63fCyx3, so
Lpx6 = Lpx3.

This shows px3 is idempotent. Dually kxi is idempotent, so also is <t>x3, and the proof
is complete.

The following is immediate by Theorems 2, 3 and 4:

Corollary 5. / / S is any semigroup then S/n is fundamental and E(S) is a biordered
subset of E(S/n). Thus every semigroup is a biorder-preserving coextension of a funda-
mental semigroup.
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