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ON THE EXISTENCE OF POSITIVE SOLUTIONS FOR A CLASS OF INFINITE
SEMIPOSITONE PROBLEMS

We discuss the existence of a positive solution to the infinite semipositone problem

−∆u = −au+ bu2 − du3 − f(u)− c

uα
, x ∈ Ω , u = 0 , x ∈ ∂Ω

where α ∈ (0, 1), a, b, d and c are positive constants, Ω is a bounded domain in RN with smooth
boundary ∂Ω, ∆ is the Laplacian operator, and f : [0,∞) → R is a nondecreasing continuous
function such that f(u) → ∞ and f(u)/u→ 0 as u→ ∞. We obtain our result via the method
of sub- and supersolutions. We also extend our result to classes of infinite semipositone system
and p-Laplacian problem.
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1 Introduction

Consider the boundary value problem

−∆u = −au+ bu2 − du3 − f(u)− c
uα , x ∈ Ω

u = 0, x ∈ ∂Ω
(1)

where α ∈ (a, b), a, b, d and c are positive constants, and Ω is a bounded domain in RN with
smooth boundary ∂Ω ,∆ is the Laplacian operator, and f : [0,∞) → R is a continuous function.
We make the following assumptions:

(H1) f : [0,∞) → R is nondecreasing continuous functions such that lims→+∞ f(s) = ∞.

(H2) lims→+∞
f(s)
s

= 0.

Note that (1) is as an infinite semipositone problems (limu→0 F (u) = −∞, where
F (u) := −au+ bu2 − du3 − f(u)− (c/uα)).
in [9] the authors have studied the case when F (u) := g(u)(c/u) where g is nonnegative and
nondecreasing and limu→∞ g(u) = ∞. The case g(u) := au − f(u) has been studied in [8],
where f(u) ≥ auM and f(u) ≤ Aup on [0,∞) for some M,A > 0, p > 1 and this g may
have a falling zero. A simple example of this g is g(u) = uup, where p > 1. Note that this g
has a falling zero at u = 1, in fact g is negative for u > 1. In this article, we consider the case
when g(u) := au+ bu2du3f(u) and we study more challenging infinite semipositone problem.
A example of f satisfying our hypotheses is f(x) = up; 0 < p < 1. Further, let 0, R1 and R2

denote the zeros of au + bu2du3 (such that R1 < R2), then g(u) = au + bu2du3up is negative
for u < R1 and u > R2. In recent years, there has been considerable progress on the study of
semipositione problems ( F (0) < 0 but finite)(see [2, 3, 6]). Many results have been obtained
of infinite semipositone problems; see for example [7], [8], [9] and [10].
In [1], the authors establish the existence of a positive solution to∆u = au+ bu2du3ch(x) with
Dirichlet boundary conditions and the method employed in it uses the fact that infs∈[0,R2](au+

bu2du3) < ar, where r is the first positive zero of (au+ bu2du3)′. We will use in this paper this
fact, too. The main tool used in this study is the method of sub- and supersolutions ([4]).



2 The main result

In this section, we shall establish our existence result via the method of sub - supersolution. A
function ψ is said to be a subsolution of (1) if it is in C2(Ω) ∩C(Ω̄) such that ψ = 0 on ∂Ω and

−∆ψ ≤ −aψ + ψ2 − dψ3 − f(ψ)− c

ψα
in Ω

and z is said supersolution of (1) if it is in C2(Ω) ∩ C(Ω̄) such that z = 0 on ∂Ω and

−∆z ≥ −az + z2 − dz3 − f(z)− c

zα
in Ω

Then it is well known that if there exist a subsolution ψ and supersolution z such that ψ ≤ z in
Ω then (1) has a solution u such thatψ ≤ u ≤ z, see [4].

Theorem 1. Let (H1) and (H2) hold, Then there exists positive constants b0 := b0(a, d,Ω) and
c0 := c0(a, b, d,Ω) such that for b ≥ b0 and c ≤ c0, problem (1) has a positive solution.

Proof. Let λ1 > 0 be the first eigenvalue of the operator −∆ with Dirichlet boundary condition
and ϕ1 be the corresponding eigenfunction satisfying ϕ1 > 0 in Ω and ∂ϕ1

∂v
< 0 on ∂Ω, where ν

is outward normal vector on ∂Ω and ∥ ϕ1 ∥∞= 1, see [5].
Note that λ1 and ϕ1 satisfy:

−∆ϕ1 = λ1ϕ1 in Ω

ϕ1 = 0 on ∂Ω

Let σ > 0, µ > 0,m > 0 be such that(
2

1 + α

){(
1− α

1 + α

)
|∇ϕ1|2 − λ1ϕ

2
1

}
≥ m in Ω̄δ, (2)

and ϕ1 ∈ [µ, 1] inΩ\Ω̄δ where Ω̄δ := {x ∈ Ω : d(x, ∂Ω) ≤ δ}. This is possible since |∇ϕ1| ̸= 0

on ∂Ω while ϕ1 = 0 on ∂Ω.

Let b0 > 2
√
ab and P (s) = −as+bs2−ds3. Then the zeros of P(s) are 0, R1 =

b−
√
b2 − 4ad

2d

and R2 =
b+

√
b2 − 4ad

2d
. We note that P(s) can be factored as P (s) = −ds(s− R1)(s− R2).

Let r =
b−

√
b2 − 3ad

3d
denote the first positive zero of P ′(s). since P(s) is convex on (0, b

3d
)

and r < b
3d
, we have

ρ := − inf
s∈[0,R2]

P (s) < a(b−
√
b2 − 3ad/3d) = ar

(see 1) We note that
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Figure 1: Graph of P(s).

ρ

R2

<
a(b−

√
b2 − 3ad/3d)

b−
√
b2 − 4ad/2d

=
2a2d

(b−
√
b2 − 4ad)(b+

√
b2 − 3ad)

→ 0 as b→ ∞

R2

R1

=
b+

√
b2 − 4ad

b−
√
b2 − 4ad

=
(b+

√
b2 − 4ad)

4ad
→ ∞ as b→ ∞

Hence there exists b(1)0 := b
(1)
0 (a, d,Ω) such that for every b > b

(1)
0 we have

ρ

R2

<
m

6
, (3)[

R2

2
µ

2
1+α , R2

2

]
⊂ (R1, R2) and kµ := inf

s∈
[
R2
2
µ

2
1+α ,

R2
2

] P (s) > 0. Next we see that

kµ
R2

=
min

{
P (R2

2
µ

2
1+α ), P (R2

2
)
}

R2

= min

{
d
R2

2
µ

2
1+α

(
R2

2
µ

2
1+α −R1

)(
1− µ

2
1+α

2

)
, d
R2

4

(
R2

2
−R1

)}
→ ∞ as b→ ∞

and hence there exists b(2)0 := b
(2)
0 (a, d,Ω) such that foor every b > b

(2)
0 we have

kµ
R2

>
2λl

1 + α
.
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Finally from (H1) and (H2), f(R2) → ∞ and f(R2/2)/(R2/2) → 0 as b→ ∞.
Thus there exists b(3)0 := b

(3)
0 (a, d,Ω) such that for every b > b

(3)
0 we have f(R2) ≥ 0 and

f

(
R2

2
ϕ

2
1+α

1

)
≤ f(

R2

2
) ≤ min{λ1,

m

3
}(R2

2
). (4)

For a given a, d > 0, define b0 := max{b(1)0 , b
(2)
0 , b

(3)
0 } and

c0 := c0(a, b, d,Ω) := min

{
m

3
(
R2

2
)1+α, (

R2

2
)αµ2α/1+α(kµ −

2λ1
1 + α

R2)

}
,

and let b ≥ b0 and c ≤ c0. We will show that ψ := Rϕ
2/1+α
1 is a subsolution of (1), where

R := R2

2
.

We first note that
∇ψ = R

(
2

1 + α

)
ϕ

1−α
1+α

1 ∇ϕ1

and

−∆ψ = −R
(

2

1 + α

){
ϕ

1−α
1+α

1 ∆ϕ1 +

(
1− α

1 + α

)
ϕ
− 2α

1+α

1 |∇ϕ1|2
}

= R

(
2

1 + α

)
1

(ϕ
2

1+α

1 )α

{
λ1ϕ

2
1 − (

1− α

1 + α
)|∇ϕ1|2

}
.

Next for x ∈ Ω̄δ since 1

(ϕ
2

1+α
1 )α

≥ 1, from (2), (3), (4) and c ≤ c0 we have

−∆ψ = R

(
2

1 + α

)
1

(ϕ
2

1+α

1 )α

{
λ1ϕ

2
1 −

(
1− α

1 + α

)
|∇ϕ1|2

}
≤ −mR 1

(ϕ
2

1+α

1 )α

= − mR

3

(
(ϕ

2
1+α

1 )

)α − mR

3

(
(ϕ

2
1+α

1 )

)α − mR

3

(
(ϕ

2
1+α

1 )

)α

≤ −mR
3

− mR

3
− mR

3

(
(ϕ

2
1+α

1 )

)α

≤ −ρ− f

(
Rϕ

2
1+α

1

)
− mR1+α/3(

Rϕ
2

1+α

1

)α

≤ −aψ + bψ2 − dψ3 − f(ψ)− c

ψα
.

Also for x ∈ Ω\Ω̄δ, since 0 < µ ≤ ϕ, from (4) and c ≤ c0,
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−∆ψ = R

(
2

1 + α

)
1(

Rϕ
2

1+α

1

)α

{
λ1ϕ

2
1 −

(
1− α

1 + α

)
|∇ϕ1|2

}

≤ R

(
2

1 + α

)
λ1ϕ

2
1+α

≤ R

(
2

1 + α

)
λ1

= 2

[
R

(
2

1 + α

)
λ1

]
−R

(
2

1 + α

)
λ1

≤ 4λ1
1 + α

R−Rλ1

≤ kµ −
c(

Rµ
2

1+α

)α − f

(
Rϕ

2
1+α

1

)
≤ −aψ + bψ2 − dψ3 − f(ψ)− c

ψα
. (5)

According to (??) and (??), we can conclude that ψ is a subsolution of (1). We also show that
z := R2 is a supersolution, by noting that

−∆z = 0 ≥ −f(z)− c

zα
= −az + bz2 − dz3 − f(z)− c

zα
.

Further z ≥ ψ. Thus, (1) has a positive solution. This completes the proof of Theorem 2.1.

3 Extension of (1) to system (6)

In this section, we consider the extension of (1) to the following system:
−∆u = −a1u+ b1u

2 − d1u
3 − f1(u)− c1

vα
, x ∈ Ω,

−∆u = −a2u+ b2u
2 − d2u

3 − f2(u)− c2
vα
, x ∈ Ω,

u = 0 = v, x ∈ ∂Ω,

(6)

where α ∈ (0, 1), a1, a2, b1, b2, d1, d2, c1 and c2 are positive constants, Ω is a bounded domain
in RN with smooth boundary ∂Ω, and fi : [0,∞) → R is a continuous function for i = 1, 2. We
make the following assumptions

(H1) fi : [0,+∞) → R is nondecreasing continuous functions such that lims→+∞ fi(s) = ∞
for i = 1, 2.
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(H2) lims→+∞
f1(s)
s

= 0 for i = 1, 2.

We prove the following result by finding sub-super solutions to infinite semipositone system (6).

Theorem 2. Let (H3) and (H4) hold, Then there exists positive constants b∗0 := b∗0(a1, a2, d1, d2,Ω)

and c∗0 := b∗0(a1, a2, b1, b2, d1, d2,Ω) such that formin{b1, b2} ≥ b∗0 andmax{c1, c2} ≤ c∗0, prob-
lem (6) has a positive solution.

Proof. Let (R(i)
1 , R

(i)
2 , ρ

(i), k
(i)
µ ), Pi(s) := −ais+ bis

2 − dis
3 for i = 1, 2 be given, as in section

2. By the same argument as in section 2, there exists b∗0 := b∗0(a1, a2, d1, d2,Ω) such that for
min{b1, b2} > b∗0 we have

ρ(i)

R
(i)
2

<
m

6
,

k
(i)
µ

R
(i)
2

>
2λ

1 + α
,

and fi
(

R
(i)
2

2
ϕ

2
1+α

1

)
≤ min{λ1, m3 }

(
R

(i)
2

2

)
for i = 1, 2. Define

c∗0 := c∗0(a1, a2, b1, b2, d1, d2,Ω)

:= min{m
3

(
R

(1)
2

2

)(
R

(2)
2

2

)α

,
m

3

(
R

(1)
2

2

)α(
R

(2)
2

2

)
,

(
R

(2)
2

2

)α

µ2α/1+α

(
k(1)µ − 2λ1

1 + α
R

(1)
2

)
,(

R
(1)
2

2

)α

µ2α/1+α

(
k(2)µ − 2λ1

1 + α
R

(2)
2

)
}

and (ψ1ψ2) := (R(1)ϕ
2/1+α
1 , R(2)ϕ

2/1+α
2 ), where R(i) = R

(i)
2 /2. Let min{b1, b2} > b∗0 and

max{c1, c2} ≤ c∗0, then for x ∈ Ω̄δ we have

−∆ψ1 = R(1)

(
2

1 + α

)
1(

ϕ
2

1+α

1

)α

{
λ1ϕ

2
1 −

(
1− α

1 + α

)
|∇ϕ1|2

}

≤ −mR(1) 1(
ϕ

2
1+α

1

)α

≤ −mR
(1)

3
− mR(1)

3
− mR(1)

3

(
ϕ

2
1+α

1

)α

≤ −ρ(1) − f(R(1)ϕ
2

1+α

1 )− mR(1)[R(2)]α/3

(R(2)ϕ
2

1+α

1 )α

≤ −aψ1 + bψ2
1 − dψ3

1 − f(ψ1)−
c1
ψα
2

.

And for x ∈ Ω\Ω̄δ, we have
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−∆ψ1 = R(1)

(
2

1 + α

)
1(

ϕ
2

1+α

1

)α

{
λ1ϕ

2
1 −

(
1− α

1 + α

)
|∇ϕ1|2

}

≤ R(1)

(
2

1 + α

)
λ1

= 2

[
R(1)

(
2

1 + α

)
λ1

]
−R(1)

(
2

1 + α

)
λ1

≤ 4λ1
1 + α

R(1) −R(1)λ1

≤ k(1)µ − c2

R(2)µ
2

1+α

− f

(
R(1)ϕ

2
1+α

1

)
≤ −a1ψ1 + b1ψ

2
1 − d1ψ

3
1 − f(ψ1)−

c1
ψα
2

.

Similary
−∆ψ2 ≤ −a2ψ2 + b2ψ

2
2 − d2ψ

3
2 − f(ψ2)−

c2
ψα
1

, x ∈ Ω

Thus the (ψ1, ψ2) is a subsolution of (6). It is obvious that (z1, z2) := (R
(1)
2 , R

(2)
2 ) is a superso-

lution of (6), such that (z1, z2) ≥ (ψ1, ψ2). Thus Theorem 3.1 is proven.

4 Extension of (1) to problem (7)

In this section, we consider the extension of (1.1) to the following problem:

−∆pu = −au+ bu2 − du3 − f(u)− c
uα , x ∈ Ω,

u = 0, x ∈ ∂Ω,
(7)

where ∆pz = div(|∇z|p−2∇z), p > 1, α ∈ (0, 1), a, b, d and c are positive constants, Ω is a
bounded domain inRN with smooth boundary ∂Ω, and f : [0,∞) → R is a continuous function.
Then we have the following result.

Theorem 3. Let (H1) and (H2) hold, Then there exists positive constants b∗∗0 := b∗∗0 (a, d,Ω) and
c∗∗0 := c∗∗0 (a, d,Ω) such that for b ≥ b∗∗0 and c ≤ c∗∗0 , problem (7) has a positive solution.

Proof. We shall establish Theorem 4.1 by constructing positive sub-super solutions to equation
(7). Let λ1 be the first eigenvalue of the problem

−∆pϕ1 = λ1ϕ
p−1
1 , x ∈ Ω, ϕ1 = 0, x ∈ ∂Ω,

۷



where ϕ1 denote the corresponding eigenfunction, satisfying ϕ1 > 0 in Ω and |∇ϕ1| > 0 on ∂Ω,
see [5]. Without loss of generality, we let ∥ ϕ1 ∥∞= 1. Let δ > 0, µ > 0,m > 0 be such that(

p

p− 1 + α

)p−1{
(1− α)(p− 1)

p− 1 + α
|∇ϕ1|p − λ1ϕ

p
1

}
≥ m in Ω̄δ,

and ϕ1 ∈ [µ, 1] inΩ\Ω̄δ, where Ω̄δ := {x ∈ Ω : d(x, ∂Ω) ≤ δ}. This is possible since |∇ϕ1| ̸= 0

on ∂Ω while ϕ1 = 0 on ∂Ω.
Also let R1, R2 be as in section 2 and b∗∗0 be such that for every b > b∗∗0

ρ

Rp−1
2

<
m

6
,

kµ

Rp−1
2

>

(
λ1
2

)(
p

p− 1− α

)p−1

,

and

f

([
R2

2

]p−1

ϕ
p

p−1+α

1

)
≤ min

{
λ1,

m

3

}(R2

2

)p−1

.

Define

c∗∗0 := c∗∗0 (a, b, d,Ω)

:= min

{
m

3

(
R2

2

)(p−1)(1+α)

,

(
R2

2

)α(1+α)

µ
αp

p−1+α

[
kµ −R2λ1

(
p

p− 1 + α

)p−1
]}

and ψ := Rϕ
p

p−1+α

1 . Then

∇ψ = R

(
p

p− 1 + α

)
ϕ

1−α
p−1+α

1 ∇ϕ1

and

∆pψ = div(|∇ψ|p−2∇ψ)

= Rp−1

(
p

p− 1 + α

)p−1

div

(
ϕ

(1−α)(p−1)
p−1+α

1 |∇ϕ1|p−2∇ϕ1

)
= Rp−1

(
p

p− 1 + α

)p−1{
∇
(
ϕ

(1−α)(p−1)
p−1+α

1

)
|∇ϕ1|p−2∇ϕ1 + ϕ

(1−α)(p−1)
p−1+α

1 ∆pϕ1

}
= Rp−1

(
p

p− 1 + α

)p−1{
(1− α)(p− 1)

p− 1 + α
ϕ

−αp
p−1+α

1 |∇ϕ1|p − λ1ϕ
p(p−1)
p−1+α

1

}
= Rp−1

(
p

p− 1 + α

)p−1
1

ϕ
p

p−1+α

1

{
(1− α)(p− 1)

p− 1 + α
|∇ϕ1|p − λ1ϕ

p
1

}
,

thus,

−∆pψ = Rp−1

(
p

p− 1 + α

)p−1
1(

ϕ
p

p−1+α

1

) {λ1ϕp
1 −

(1− α)(p− 1)

p− 1 + α
|∇ϕ1|p

}
.
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By the same argument as in the proof of theorem 2.1, we can show that ψ is a subsolution of (7)
for b ≥ b∗∗0 and c ≤ c∗∗0 . Next, it is easy to check that z := R2 is a supersolution of (7) with
z ≥ ψ. Hence (7) has a positive solution and the proof is complete.
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