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ON THE EXISTENCE OF POSITIVE SOLUTIONS FOR A CLASS OF INFINITE
SEMIPOSITONE PROBLEMS

We discuss the existence of a positive solution to the infinite semipositone problem

—Au:—au+bu2—du3—f(u)—i, x€e€Q, u=0, xz€df
uOé

where a € (0,1), a, b, d and ¢ are positive constants, € is a bounded domain in RY with smooth
boundary 052, A is the Laplacian operator, and f : [0, 00) — R is a nondecreasing continuous
function such that f(u) — oo and f(u)/u — 0 as u — oo. We obtain our result via the method
of sub- and supersolutions. We also extend our result to classes of infinite semipositone system

and p-Laplacian problem.
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1 Introduction

Consider the boundary value problem

—Au=—au+bu?—dv’ — f(u) — %, z€Q
u=0, x € 0f)

(1)

where o € (a,b), a, b, d and ¢ are positive constants, and (2 is a bounded domain in RY with
smooth boundary 02 , A is the Laplacian operator, and f : [0, c0) — R is a continuous function.

We make the following assumptions:
(Hy) f:]0,00) — R is nondecreasing continuous functions such that lim,_, ., f(s) = cc.
(Hy) limg oo 22 = 0.

Note that (1) is as an infinite semipositone problems (lim,_,o F'(u) = —oo, where
F(u) := —au + bu* — du® — f(u) — (c/u®)).
in [9] the authors have studied the case when F'(u) := g(u)(c/u) where g is nonnegative and

nondecreasing and lim,,_,~, g(u) = oo. The case g(u) := au — f(u) has been studied in [8],



2 The main result

In this section, we shall establish our existence result via the method of sub - supersolution. A
function 1/ is said to be a subsolution of (1) if it is in C(£2) N C(£2) such that ¢» = 0 on I and

o
wa
and z is said supersolution of (1) ifitis in C2(2) N C () such that z = 0 on O and

AP < —ap + 9 —dy® — f(¥) in €

—AzZ—az+22—dz3—f(z)—% in
z

Then it is well known that if there exist a subsolution v and supersolution z such that ¢ < z in

(2 then (1) has a solution u such thaty) < u < z, see [4].

Theorem 1. Let (H1) and (H2) hold, Then there exists positive constants by := by(a, d,2) and
co := cola, b, d, Q) such that for b > by and ¢ < co, problem (1) has a positive solution.

Proof. Let A\; > 0 be the first eigenvalue of the operator —A with Dirichlet boundary condition
and ¢, be the corresponding eigenfunction satisfying ¢; > 0 in {2 and % < 0 on 052, where v
is outward normal vector on 9 and || ¢; ||o= 1, see [5].

Note that A\ and ¢, satisfy:

—Agbl = )\1§Z§1 m Q
o1 =0 on 0N

Leto > 0, © > 0, m > 0 be such that

(1ia> {G;z) |V |? —Algbf} >m in Qs, (2)

and ¢1 € [u, 1] in Q\Qs where Q5 := {x € Q: d(z,09) < §}. Thisis possible since |V, | # 0
on 0f2 while ¢; = 0 on 0f2.

b—vb?—4dad
Letby > 2v/aband P(s) = —as+ bs?> — ds®. Then the zeros of P(s) are 0, Ry = ¥, ¢
b+ Vb? — dad
and Ry = i ¥ %% We note that P(s) can be factored as P(s) = —ds(s — Ry)(s — Ra).
b—vb?—3ad
Letr = ¥ sa denote the first positive zero of P'(s). since P(s) is convex on (0, )
and r < 3—2, we have

p:=— inf P(s) <a(b—Vb?>—3ad/3d) = ar

s€[0,Rz2]

(see 1) We note that
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Figure 1: Graph of P(s).
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Hence there exists b(()l) = b(()l) (a,d, §2) such that for every b > b(()1

— 00 as b— oo

) we have

p m
<% ©)

[%um,%]c(Rl,Rg)andku — inf 7
se

R R
Fulre, 2

} P(s) > 0. Next we see that

min { P(%pt), P(%)}
Ry Ry

2
. RZ % RQ % /,Lm R2 R2
—mm{d7u+ (7,u+ —R1> (1— 5 ),dI<7—R1>}—>ooasb—>oo

and hence there exists béQ) = bég) (a,d, §2) such that foor every b > béQ) we have

k
£ 2)\1.
R2 1—|—Oé

“



Finally from (H1) and (H2), f(R2) — oo and f(R2/2)/(R2/2) — 0 as b — oo.
Thus there exists b(3) b(?’)(a d, ) such that for every b > b( we have f(Ry) > 0 and

F(For) < a5 < miniu IR @

For a given a, d > 0, define b, := max{bgl), ng), bé3)} and

ng

Ry
3< 2 92

2

)

= b,d, ) :=
¢ = cola,b,d, Q) := mm{ T o

2\
)a,u2a/1+a<ku _ 1 RQ)} ’
and let b > by and ¢ < ¢y. We will show that ¢ := Rng/ 7% is a subsolution of (1), where
R = %.

We first note that
2

1+«

2 =2 1l—a -2
vk (o) {elFao (155) o Iva

- (1ia) wf;)a{wl (vl |

v¢:R( )1”V@

and

(<¢>f+°‘>a
soen(p2) ot (152 o]
(¢17 )~
< —-mR ;
(™)
_ mR B mR B mR
3((%)) 3((%)) 3((%))
mR mR mR

R A 2 \°
3(< >)
<-p—f (Rqﬁ”a) _ mBRTS
)
C

S—aw+b¢2—d¢3—f(1/})—%-

Also for z € Q\Q;, since 0 < p < ¢, from (4) and ¢ < co,
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< —app+ by? — AP — f() — wi

According to (??) and (??), we can conclude that 1 is a subsolution of (1). We also show that

()

z := Ry is a supersolution, by noting that

—Az:OZ—f(z)—z%:—az+bz2—dz3—f(z)—i

2o

Further z > . Thus, (1) has a positive solution. This completes the proof of Theorem 2.1.

O
3 Extension of (1) to system (6)
In this section, we consider the extension of (1) to the following system:
—Au=—aju+bu? —dw’ — fi(u) — &, zeq,
—Au = —agu + byu® — dau® — fo(u) — &, xeqQ, (6)

u=0=wv, x € 082,

where a € (0, 1), a1, as, by, ba, dy, ds, ¢1 and ¢, are positive constants, (2 is a bounded domain
in RY with smooth boundary ¢, and f; : [0, cc) — R is a continuous function fori = 1, 2. We

make the following assumptions

(Hy) fi 2 [0,400) — R is nondecreasing continuous functions such that lim,_, , o, fi(s) = oo
fori =1,2.



(Hz) lim, o0 28 = 0 fori = 1,2.
We prove the following result by finding sub-super solutions to infinite semipositone system (6).

Theorem 2. Let (H3) and (H4) hold, Then there exists positive constants b}, := b(a1, az, dy, ds, )
and cf = b§(ay1, az, by, ba, dy, do, Q) such that for min{by, by} > b} and max{cy,co} < ¢, prob-

lem (6) has a positive solution.

Proof. Let (R, RY), p® kY, P(s) := —a;s + b;s2 — d;s3 for i = 1,2 be given, as in section
2. By the same argument as in section 2, there exists b§ := bi(ay, as, dy, ds,2) such that for

min{by, by} > b we have

(4) (4)
F_.n b = > 2\
R(’) 6 Ré’) 1+«

(i) _2_
and fl (R% 11Ia) < mm{)\l, 3} (R

Y

O]

) for ¢ = 1, 2. Define
co := cplar, az, by, by, dy, da, )
(1 2 @ 1 & 2 2 o
= mm{— RQI £ m i ﬂ i u2a/1+a RGO 2\ RW
' 2 2 ] 73\ 2 2 |7\ 2 v lrae
RSI i 2a/1+a [ 1.(2) 2\ 2
(T S s

and (Y11hy) = (RW¢Y™ R@ 2" where R® = R{"/2. Let min{by, by} > b7 and

max{cy, c} < ¢, then for z € Q5 we have

2

- = RO (2] ( i)a{wi (152 ) Ivau}

IN
I
I
I

iy mBEOR] 3
(R®oF):

< —arpy + by — dw% — f) — 1/1_
2

And for z € Q\Qs, we have



< RW — pM
T 14+«
< _ 2 (Rm u)
= hy R(Q)MH% f 1
C
< —arhy + b} — did} — f() — w—l
2

Similary
C
Aty < —agthy + bothd — dot) — fihy) — —, zEQ

1
Thus the (1)1, 1) is a subsolution of (6). It is obvious that (21, z5) := (RY", Rég)) is a superso-
lution of (6), such that (z, z2) > (1, %2). Thus Theorem 3.1 is proven.

O
4 Extension of (1) to problem (7)
In this section, we consider the extension of (1.1) to the following problem:
—Apu = —au+bu® —du® — f(u) — %, e, -

u =0, xr € 012,

where A,: = div(|Vz|P72Vz),p > 1, a € (0,1), a, b, d and ¢ are positive constants, ) is a
bounded domain in RY with smooth boundary 9€, and f : [0, 00) — R is a continuous function.

Then we have the following result.

Theorem 3. Let (HI) and (H2) hold, Then there exists positive constants b§* := by*(a, d,)) and
c5r = ¥ (a, d, Q) such that for b > b§* and ¢ < ci*, problem (7) has a positive solution.

Proof. We shall establish Theorem 4.1 by constructing positive sub-super solutions to equation

(7). Let \; be the first eigenvalue of the problem

_Ap¢1 = )‘1¢117_17 S Q) ¢1 = 07 HS aS27



where ¢; denote the corresponding eigenfunction, satisfying ¢; > 01in 2 and |V¢1| > 0 on 02,
see [5]. Without loss of generality, we let || ¢1 ||oo= 1. Let 6 > 0, u > 0, m > 0 be such that

(Lyl{(lp_ V=154, w;} >min O,

p—1+4+a 1+«
and ¢ € [p, 1]in Q\Qs, where Qs := {z € Q : d(x,00) < §}. This is possible since |V, | # 0
on 02 while ¢; = 0 on 0f2.
Also let Ry, Ry be as in section 2 and bj* be such that for every b > bj*

k A p-l
'071<@7 Lo JALS Y N 7
RY 6 RY 2 p—1—«a

([3] o) s 5} (5)

and

Define

eyt =y (a,b,d, )

. m ( Ry (p—1)(1+a) R2 a(l+a)
=min{ — | — , i
3\ 2 2

and ¢ := Ré?'** . Then

p \"
i = (m) ”

Vo =R (L) PRy,

p—1+a
and
Apy = div([Vy[P2Vy)
= p Pl ey B
- (m) aw (¢1 Vel w)
-1 r_\" = - Goaley
- (=ira) (T marve e A
ot p(p—1)
— p_l p (1 _ a)(p ) p— 1+o¢ p P TFa
i (p—1+a) { p—1+a gbl |V¢|
p—1
- 1 (1—a)(p—1)
— Rr1 p : Vonl? — a b
(p—1+a) ¢{771+a { p—1+a ‘ ¢1‘ 191
thus,

— A = R (—p )p_l ﬁ {/\lgbzl) 3 (1p— a)l(i >|v¢ ,p}



By the same argument as in the proof of theorem 2.1, we can show that v is a subsolution of (7)
for b > 0" and ¢ < ¢§*. Next, it is easy to check that 2 := Ry is a supersolution of (7) with
z > 1. Hence (7) has a positive solution and the proof is complete.
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