سلام
ساختار زیر مشکل شما را حل میکند
\fontsize{12pt}{22pt}\selectfont
که فرم کلی آن به صورت زیر است:
\fontsize{size}{skip}
لازم به ذکر است که در نمونهی شما کلاس article
به صورت زیر فراخوانی شده است:
\documentclass[a4paper]{article}
و قلم پیشفرض شما 10pt
است و میتوان از روش زیر نیز فونت پیشفرض تمام مقاله را 12pt
انتخاب کرد.
\documentclass[a4paper,12pt]{article}
کدهای شما به صورت زیر است:
\documentclass[a4]{article}%
\usepackage{graphicx}
\usepackage{longtable}
\begin{document} {\fontsize{12pt}{22pt}\selectfont
\begin{longtable}{ll}
\hline
$f(t)=L^{-1}(F(s))(t)$ & $F(s)=L(f(t))(s)$ \\
\hline
1 & $\frac{1}{s},~~~~s>0$ \\
$t$ & $\frac{1}{s^{2}},~~~~s>0$ \\
$\frac{t^{n-1}}{(n-1)!},~~~~n=1,2,\cdots$ & $\frac{1}{s^{n}},~~~~n=1,2,\cdots ,~s>0$\\
$\frac{1}{\sqrt{\pi t}},~~~~t>0$ & $\frac{1}{\sqrt{s}},~~~~s>0$ \\
$2\sqrt{t/\pi},~~~~t>0$ & $\frac{1}{s^{3/2}},~~~~s>0$ \\
$t^{a-1}/\Gamma (a) ,~~~~a>0$ & $\frac{1}{s^{a}},~~~~a>0 ;~~s>0$ \\
$e^{at}$ & $\frac{1}{s-a},~~~~s>a$ \\
$te^{at}$ & $\frac{1}{(s-a)^{2}},~~~~s>a$ \\
$\frac{1}{(n-1)!}t^{n-1}e^{at},~~~~n=1,2,\cdots $ & $\frac{1}{(s-a)^{n}} ;~~~~s>a,~n=1,2,\cdots$\\
$\frac{1}{\Gamma (k)}t^{k-1}e^{at},~~~~k>0$ & $\frac{1}{(s-a)^{k}},~~~~k>0$ \\
$\frac{1}{a}(e^{2t}-1)$ & $\frac{1}{s(s-a)},~~~~s>\max \{0,a\}$ \\
$\frac{1}{a-b}(e^{at}-e^{bt})$ & $\frac{1}{(s-a)(s-b)} ;~~~~a\neq b,~s>\max \{a,b\}$ \\
$-\frac{(b-c)e^{at}+(c-a)e^{bt}+(a-b)e^{ct}}{(a-b)(b-c)(c-a)}$ & $\frac{1}{(s-a)(s-b)(s-c)};~~s>\max \{a,b,c\},~a\neq b, b\neq c , c\neq a$ \\
%1
%2
$\frac{1}{a-b}(ae^{at}-be^{bt})$ & $\frac{s}{(s-a)(s-b)};~~a\neq b ,~s>\max \{a,b\}$ \\
$(1+at)e^{at}$ & $\frac{s}{(s-a)^{2}},~~~~s>a$ \\
$\frac{1}{b}\sin bt , ~~~~b\neq 0$ & $\frac{1}{s^{2}+b^{2}};~~~~s>0,~~b\neq 0$ \\
$\cos bt$ & $\frac{s}{s^{2}+b^{2}},~~~~s>0$ \\
$\frac{1}{b}\sin bt , ~~~~b\neq 0$ & $\frac{1}{s^{2}-b^{2}},~~~~s>0,~~b\neq 0$ \\
$\cosh bt$ & $\frac{s}{s^{2}-b^{2}},~~~~s>0$ \\
$\frac{1}{b}e^{at}\sinh bt,~~~~b\neq 0$ & $\frac{1}{(s-a)^{2}+b^{2}};~~~~s>a,~b\neq 0$ \\
$e^{at}\cos bt $ & $\frac{s-a}{(s-a)^{2}+b^{2}},~~~s>a$ \\
$\frac{1}{b^{2}}(1-\cos bt),~~~~b\neq 0$ & $\frac{1}{s(s^{2}+b^{2})};~~~~s>0,~b \neq 0$ \\
$\frac{1}{b^{3}}(bt -\sin bt),~~~~b\neq 0$ & $\frac{1}{s^{2}(s^{2}+b^{2})};~~~~s>0,~b \neq 0$ \\
$\frac{1}{b^{3}}(\sinh bt - bt),~~~~b\neq 0$ & $\frac{1}{s^{2}(s^{2}-b^{2})};~~~~s>0,~b \neq 0$ \\
%2
%3
$\frac{1}{2b^{3}}(\sin bt- bt \cos bt),b\neq 0$ & $\frac{1}{(s^{2}+b^{2})^{2}};~~~~s>0,~b\neq 0$ \\
$\frac{1}{2b}t \sin bt ,~~~~b\neq 0$ & $\frac{s}{(s^{2}+b^{2})^{2}};~~~~s>0,~b\neq 0$ \\
$\frac{1}{2b}(\sin bt+ bt \cos bt),b\neq 0$ & $\frac{s^{2}}{(s^{2}+b^{2})^{2}};~~~~s>0,~b\neq 0$ \\
$\frac{1}{2b^{3}}(bt\cosh bt- \sinh bt),b\neq 0$ & $\frac{1}{(s^{2}-b^{2})^{2}};~~~~s>0,~b\neq 0$ \\
$\frac{1}{2b}t\sinh bt ,~~~~b \neq 0$ & $\frac{s}{(s^{2}-b^{2})^{2}};~~~~s>0,~b\neq 0$ \\
$\frac{1}{2b}(\sin bt+ bt \cos bt),b\neq 0$ & $\frac{s^{2}}{(s^{2}-b^{2})^{2}};~~~~s>0,~b\neq 0$ \\
$\frac{1}{a^{2}-b^{2}}\left( \frac{\sin bt}{b} - \frac{\sin at}{a} \right),~~~~a^{2}\neq b^{2}$ & $\frac{1}{(s^{2}+a^{2})(s^{2}+b^{2})};~~~~s>0,~a^{2}\neq b^{2}$ \\
$\frac{1}{a^{2}-b^{2}}( \cos bt -\cos at) ,~~~~a^{2}\neq b^{2}$ & $\frac{s}{(s^{2}+a^{2})(s^{2}+b^{2})};~~~~s>0,~a^{2}\neq b^{2}$ \\
$\frac{1}{a^{2}-b^{2}}( a\sin at -b\sin bt) ,~~~~a^{2}\neq b^{2}$ & $\frac{s^{2}}{(s^{2}+a^{2})(s^{2}+b^{2})};~~~~s>0,~a^{2}\neq b^{2}$ \\
$\frac{1}{a^{2}-b^{2}}\left( \frac{\sinh at}{a} -\frac{\sinh bt}{b}\right) ,~~~~a^{2}\neq b^{2}$ & $\frac{1}{(s^{2}-a^{2})(s^{2}-b^{2})};~~~~s>0,~a^{2}\neq b^{2}$ \\
$\frac{1}{a^{2}-b^{2}}( \cosh at -\cosh bt) ,~~~~a^{2}\neq b^{2}$ & $\frac{s}{(s^{2}-a^{2})(s^{2}-b^{2})};~~~~s>0,~a^{2}\neq b^{2}$ \\
%3
%4
$\frac{1}{a^{2}-b^{2}}( a\sinh at -b\sinh bt) ,~~~~a^{2}\neq b^{2}$ & $\frac{s^{2}}{(s^{2}-a^{2})(s^{2}-b^{2})};~~~~s>0,~a^{2}\neq b^{2}$ \\
$\frac{1}{4b^{3}}( \sin bt \cos bt -\cos bt \sinh bt) $ & $\frac{1}{s^{4}+4b^{4}};~~~~s>0,~b\neq 0$ \\
$\frac{1}{2b^{2}}\sin bt \sinh bt $ & $\frac{s}{s^{4}+4b^{4}};~~~~s>0,~b\neq 0$ \\
$\frac{1}{b}\sin bt \cosh bt $ & $\frac{s^{2}+2b^{2}}{s^{4}+4b^{4}};~~~~s>0,~b\neq 0$ \\
$\frac{1}{b}\cos bt \sinh bt $ & $\frac{s^{2}-2b^{2}}{s^{4}+4b^{4}};~~~~s>0,~b\neq 0$ \\
$\cos bt \cosh bt $ & $\frac{s^{3}}{s^{4}+4b^{4}},~~~~s>0$ \\
$\frac{1}{2b^{3}}(\sinh bt- \sin bt) $ & $\frac{1}{s^{4}-b^{4}};~~~~s>0,~b\neq 0$ \\
$\frac{1}{2b^{2}}(\cosh bt- \cos bt) $ & $\frac{s}{s^{4}-b^{4}};~~~~s>0,~b\neq 0$ \\
$J_{0}(bt)$ & $\frac{1}{\sqrt{s^{2}+b^{2}}},~~~s>0$ \\
$\frac{e^{bt}-e^{at}}{t}$ & $\ln \frac{s-a}{s-b},~~~~s>\max \{a,b\}$ \\
$\frac{2(1-\cos bt)}{2}$ & $\ln \frac{s^{2}+b^{2}}{s^{2}},~~~~s>0$ \\
$\frac{2(1-\cosh bt)}{2}$ & $\ln \frac{s^{2}-b^{2}}{s^{2}},~~~~s>0$ \\
%4
%5
$H(t-a)$ & $\frac{e^{-as}}{s}$ \\
$\delta (t-a)$ & $e^{-as}$ \\
$f(t-a)H(t-a)$ & $e^{-as}F(s)$ \\
$J_{0}(2\sqrt{at})$ & $\frac{1}{s}e^{-a/s};~~~~s>0,a>0$ \\
$\frac{1}{\sqrt{\pi t}}\cos 2\sqrt{at}$ & $\frac{1}{\sqrt{s}}e^{-a/s};~~~~s>0,a>0$ \\
$\frac{a}{2\sqrt{\pi t^{3}}}e^{-a^{2}/4t}$ & $e^{-a\sqrt{s}};~~~~s>0,a>0$ \\
$t^{n}f(t),~~~~n=1,2,\cdots $ & $(-1)F^{(n)}(s) ,~~~n=1,2,\cdots $ \\
$\frac{f(t)}{t},~~~~t>0$ & $\int _{s}^{\infty}F(u)du$\\
\end{longtable}}
\end{document}
و خروجی زیر را دریافت میکنید:
موفق باشید.