با سلام
میتوانی برایش یک محیط جدید به صورت زیر تعریف کنی
\documentclass[3p,times,procedia]{elsarticle}
\usepackage{subfigure}
\usepackage[fleqn]{amsmath}
\usepackage{amsthm , amssymb , amsfonts , mathtools}
\usepackage[pagebackref=false,colorlinks,linkcolor=blue,citecolor=magenta]{hyperref}
\usepackage{fancyref, graphicx}
\usepackage{adjustbox}
\usepackage[singlelinecheck=false]{caption}
\usepackage[labelfont={bf,small}]{caption}
\captionsetup[figure]{name=Fig.}
\captionsetup[table]{name=Table}
\usepackage[all]{hypcap}
\def\tableautorefname{Tables}
\newcommand{\Autoref}[1]{%
\begingroup%
\def\tableautorefname{Tables}%
\autoref{#1}%
\endgroup%
}
\renewcommand{\tableautorefname}{Table}
\renewcommand{\figureautorefname}{Fig.}
\begin{document}
\begin{table}[th]
\captionof{table}{Numerical maximum errors obtained for example 1 at $t=1$ with $\alpha=0.6$.} \label{tab:1003}
\centering
\tiny
\tabcolsep1.2\tabcolsep
\begin{adjustbox}{width=1\textwidth}
\begin{tabular}{l l l l l l l l l l}
\hline
&&&\multicolumn{1}{c}{Finite volume method} & & \multicolumn{2}{c}{method Scheme 1} & & \multicolumn{2}{c}{method Scheme 2} \\
\cline{4-4}\cline{6-7}\cline{9-10}
$\Delta x$&$\Delta t$& &$L_{\infty}$& &$C$&$L_{\infty}$& &$C$ & $L_{\infty}$ \\
\hline
$1/10$ & $10^{-1}$& & $inf$ && $-$ & $inf$ & & $0.3$ & $2.382\times 10^{-2}$ \\
& $10^{-2}$ && $1.080\times 10^{-1}$ && $0.21$ & $1.674\times 10^{-1}$&& 0.54 & $3.529\times 10^{-2}$ \\
& $10^{-3}$ & &$1.095\times 10^{-1}$ && $0.54$ &$5.497\times 10^{-2}$ && 0.6 & $5.311\times 10^{-2}$ \\
& $10^{-4}$ && $1.096\times 10^{-1}$ && $0.55$ & $5.319\times 10^{-2}$ && 0.6 & $5.464\times 10^{-2}$ \\
\hline
\end{tabular}
\end{adjustbox}
\end{table}
\begin{table}[th]
\captionof{table}{Numerical maximum errors obtained for example 1 at $t=1$ with $\alpha=0.9$.} \label{tab:1004}
\centering
\tiny
\tabcolsep1.2\tabcolsep
\begin{adjustbox}{width=1\textwidth}
\begin{tabular}{l l l l l l l l l l}
\hline
&&&\multicolumn{1}{c}{Finite volume method} & & \multicolumn{2}{c}{method Scheme 1} & & \multicolumn{2}{c}{method Scheme 2} \\
\cline{4-4}\cline{6-7}\cline{9-10}
$\Delta x$&$\Delta t$& &$L_{\infty}$& &$C$&$L_{\infty}$& &$C$ & $L_{\infty}$ \\
\hline
$1/10$ & $10^{-1}$& & $inf$ && $-$ & $inf$ & & $0.3$ & $2.382\times 10^{-2}$ \\
& $10^{-2}$ && $1.080\times 10^{-1}$ && $0.21$ & $1.674\times 10^{-1}$&& 0.54 & $3.529\times 10^{-2}$ \\
& $10^{-3}$ & &$1.095\times 10^{-1}$ && $0.54$ &$5.497\times 10^{-2}$ && 0.6 & $5.311\times 10^{-2}$ \\
& $10^{-4}$ && $1.096\times 10^{-1}$ && $0.55$ & $5.319\times 10^{-2}$ && 0.6 & $5.464\times 10^{-2}$ \\
\hline
\end{tabular}
\end{adjustbox}
\end{table}
We solve this example with two methods presented in this paper and the Finite volume method with several values of $\Delta x$, $\Delta t$ and $C$ at $T=1$. \Autoref{tab:1003} and \ref{tab:1004} show the error norms.
\end{document}
و هرکجا لازم داشتی به جای \autoref
از \Autoref
استفاده کنی.